Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia.
نویسندگان
چکیده
Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multiple adaptive resistance mechanisms. These mechanisms include the abortive infection systems, which promote "altruistic suicide" of an infected cell, protecting the clonal population. A cryptic plasmid of Erwinia carotovora subsp. atroseptica, pECA1039, has been shown to encode an abortive infection system. This highly effective system is active across multiple genera of gram-negative bacteria and against a spectrum of phages. Designated ToxIN, this two-component abortive infection system acts as a toxin-antitoxin module. ToxIN is the first member of a new type III class of protein-RNA toxin-antitoxin modules, of which there are multiple homologues cross-genera. We characterized in more detail the abortive infection phenotype of ToxIN using a suite of Erwinia phages and performed mutagenesis of the ToxI and ToxN components. We determined the minimal ToxI RNA sequence in the native operon that is both necessary and sufficient for abortive infection and to counteract the toxicity of ToxN. Furthermore, site-directed mutagenesis of ToxN revealed key conserved amino acids in this defining member of the new group of toxic proteins. The mechanism of phage activation of the ToxIN system was investigated and was shown to have no effect on the levels of the ToxN protein. Finally, evidence of negative autoregulation of the toxIN operon, a common feature of toxin-antitoxin systems, is presented. This work on the components of the ToxIN system suggests that there is very tight toxin regulation prior to suicide activation by incoming phage.
منابع مشابه
The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair.
Various mechanisms exist that enable bacteria to resist bacteriophage infection. Resistance strategies include the abortive infection (Abi) systems, which promote cell death and limit phage replication within a bacterial population. A highly effective 2-gene Abi system from the phytopathogen Erwinia carotovora subspecies atroseptica, designated ToxIN, is described. The ToxIN Abi system also fun...
متن کاملViral Evasion of a Bacterial Suicide System by RNA–Based Molecular Mimicry Enables Infectious Altruism
Abortive infection, during which an infected bacterial cell commits altruistic suicide to destroy the replicating bacteriophage and protect the clonal population, can be mediated by toxin-antitoxin systems such as the Type III protein-RNA toxin-antitoxin system, ToxIN. A flagellum-dependent bacteriophage of the Myoviridae, ΦTE, evolved rare mutants that "escaped" ToxIN-mediated abortive infecti...
متن کاملIn vivo Characterization of Fusion Protein Comprising of A1 Subunit of Shiga Toxin and Human GM-CSF: Assessment of Its Immunogenicity and Toxicity
Background: Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. Methods: In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF...
متن کاملCharacterization of cDNA sequence encoding for a novel sodium channel -toxin from the Iranian scorpion Mesobuthus eupeus venom glands
The venoms of Buthidae scorpions are known to contain basic, single-chain protein -toxins consisting of 60-70 amino acid residues that are tightly cross-linked by four disulfide bridges. Total RNA was extracted from the venom glands of scorpion Mesobuthus eupeus collected from the Khuzestan province of Iran and then cDNA was synthesized with the modified oligo (dT) primer and extracted total R...
متن کاملStructure, Evolution, and Functions of Bacterial Type III Toxin-Antitoxin Systems
Toxin-antitoxin (TA) systems are small genetic modules that encode a toxin (that targets an essential cellular process) and an antitoxin that neutralises or suppresses the deleterious effect of the toxin. Based on the molecular nature of the toxin and antitoxin components, TA systems are categorised into different types. Type III TA systems, the focus of this review, are composed of a toxic end...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 191 19 شماره
صفحات -
تاریخ انتشار 2009